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Abstract. The photonic band structures of body-centred-tetragonal (BCT) crystals composed
of ionic or metal spheres are computed using the highly efficient vector-wave Korringa–Kohn–
Rostoker (KKR) method; an absolute band gap is found for the photonic crystals with high filling
ratio. The band gap is smaller in the crystals composed of ionic spheres than in those composed of
metal spheres. The particular BCT structure was chosen since such structure can be easily realized
in an electrorheological fluid in the presence of an electric field.

1. Introduction

In the last ten years, intensive research activity has been concentrated on the study of photonic
band materials; the interest is focused on the search for dielectric modulated structures in space
and seeking for crystal structures and material components which have absolute band gaps.
This has been so since Yablonovitch et al [1–3] showed that an absolute band gap prohibits the
spontaneous emission of light and therefore such photonic crystals can be used to study a wide
range of physical problems such as those of light localization [4–5], optical polarizers, optical
filters, and micro-cavity lasers [6, 7]; they also have broad potential commercial applications.

The band structures of photonic crystals depend both on the symmetrical properties of
the crystal structures and on the materials composing the photonic crystals. Various structures
have been considered, and absolute band gaps are found to exist in certain crystal structure
types only if the component materials are purely dielectric in character. Thus, recently effort
has shifted in the following two directions: (1) attempts to further lower the point symmetry
of the composite material [8, 9]; (2) attempts to explore other material composites [10–12];
the aim is to optimize the combination of these two factors so that the band-gap/mid-gap
frequency can be maximized. As is well known in electronic band-structure calculations, the
band gap is determined by the Fourier component of the potential modulation in space; this
depends not only on the contrast between the two materials making up the photonic crystals,
but also depends on their filling ratios. Since the metallic component has a negative real part,
the contrast between the metallic component and usual dielectric media can reach a maximum
value when they form photonic crystals [13, 14].

In this paper, we will study photonic crystals composed of ionic or metal spheres embedded
in dielectric media. We will concentrate on body-centred-tetragonal (BCT) structures since a
BCT structure can be easily realized in an electrorheological fluid of metallic coated spheres
in the presence of an external electric field [15]. The dielectric functions of ionic and metallic
materials are frequency dependent and have a frequency window in which the electromagnetic
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wave cannot propagate in the bulk material; thus it is hoped that photonic crystals composed of
such materials will be more suited to forming absolute photonic band gaps. While it is already
known that BCT crystals composed of purely dielectric media do not have absolute band gaps,
we show that BCT crystals composed of ionic or metal spheres embedded in dielectric media
do have sizable absolute band gaps and have potential industrial applications.

Because of the existence of a frequency window for the expulsion of electromagnetic
waves from such materials, one expects a sharp change in the electric field at the interface
when the frequency falls into these windows. To deal with such a situation, one needs a
numerical method which can incorporate the interface boundary condition accurately; instead
of expanding the electromagnetic wave in reciprocal space as the usual plane-wave methods
do [16–18], one needs to expand the electromagnetic field in real space so that the real-
space boundary condition can be easily incorporated. This is the so-called Korringa–Kohn–
Rostoker (KKR) method [19, 20], which was first put into practice in electronic band-structure
calculations some decades ago. Recently, the vector-wave KKR method has been formulated
for electromagnetic waves propagating in photonic crystals [21–28]; also we have written a
very efficient program code based on the vector-wave KKR method and tested it on a variety of
previous known results: fast convergence and high accuracy have been proved for all cases. The
advantage of the vector-wave KKR method is most obvious for photonic crystals with metallic
components; comparison of diamond structures made of ideal metal spheres embedded in
dielectric media shows that the vector-wave KKR method needs much less CPU time and
memory space than the finite-difference time-domain method [29]. This method will be used
in this paper.

The rest of the paper is organized as follows. In section 2, the vector-wave KKR method
is physically derived from the scattering picture; a short comparison with other methods is
made and its advantages are discussed. The numerical accuracy and high convergence rate of
the vector-wave KKR method are demonstrated. The photonic band structures of various BCT
crystals are presented and discussed in section 3 for different component elements and filling
ratios. Section 4 gives our conclusions.

2. The vector-wave Korringa–Kohn–Rostoker method

The photonic band structures are obtained by solving the Maxwell equations for photonic
crystals; the photonic crystals are usually prepared by embedding one dielectric material in
a background medium, and the dielectric difference between the embedded and background
media reflects a scattering potential for the electromagnetic wave propagating in the media.
In usual photonic crystals, such scattering potentials can be viewed as sums of potentials for
isolated scatterers; this is where the vector-wave KKR method finds application [19, 20]. In the
vector-wave KKR method, the electric field in the vicinity of the scatterer i can be expressed
as the sum of the incoming and outgoing waves with respect to scatterer i. Therefore, one has
to study the scattering properties of each of the scatterers first, since the scattering properties
of the whole photonic crystal result from these individual scattering processes.

Let us consider one spherical scatterer i with radius rS and study the scattering property
of a partial wave with angular momentum l, projection of the angular momentum m, and
polarization of the field σ . Assume that the incident wave has amplitude one with respect to
the vector spherical harmonics �J lmσ

i (�r). The index i reflects the fact that we use the local basis
with its origin at the scatterer i for the field nearby. The outgoing wave is similarly expressed
using the vector spherical harmonics �Hlmσ

i (�r). The amplitudes of outgoing waves are related
to that of the incident wave by the boundary condition for the electromagnetic wave at the
sphere surface; the amplitudes of outgoing waves make up the so-called scattering T -matrix
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if the amplitude of the incident wave is set to 1. The sums of the incident and outgoing waves
together determine the electromagnetic field outside the scattering region (r > rS):

�Ei(�r) =
∑
lmσ

[ �J lmσ
i (�r) + t lmσi

�Hlmσ
i (�r)]almσi

with almσi denoting the amplitude of the incident wave. This is all that we need if we are only
interested in the field outside the scattering region.

Once the problem for a single scatterer is solved, the many-scatterer problem can be
studied in the same way. Now let us assume that the photonic crystals contain N scatterers
and take a look at the particular scatterer i. In this case, the incident wave for the scatterer i
located at �Ri contains two parts; one part comes from the external incident wave blmσi from
outside of the crystal and the other comes from the outgoing waves emanating from the rest
of the scatterers in the crystals. Therefore, the total incident wave for the scatterer i can be
written as the sum of these two terms:∑
lmσ

almσi
�J lmσ
i (�r − �Ri) =

∑
lmσ

blmσi
�J lmσ
i (�r − �Ri) +

∑
lmσ ;j �=i

almσj t lmσj
�Hlmσ
j (�r − �Rj).

Here the indices i and j take the values from 1 to N , so a linear set of equations are obtained
which relate the amplitudes of the different scattering regions. Once these amplitudes are
determined, so is the electromagnetic wave in the crystals outside the scattering regions. The
equation set derived above can be further simplified after applying the addition theorem for the
vector spherical harmonics to move the centre of coordinates to the same origin. The equation
set governing the coefficients a finally takes the form [21, 26–28][

δss ′δll′δmm′δσσ ′ −
∑

l′′m′′σ ′′
Gss ′

lmσ ;l′m′σ ′(�k)ts ′
l′m′σ ′

]
al

′m′σ ′
s ′ = blmσs . (1)

Here we have carried out a Fourier transformation to the momentum space; �k is the Bloch
wavevector and s is the index of the scatterer in the primary cell. Gss ′

lmσ ;l′m′σ ′(�k) is the Fourier
transform of the structure factor, which can be expressed as

G
ij

lmσ ;l′m′σ ′( �R) =




∑
µ

C(l1l;m−µµ)glm−µ;l′m−µ′C(l′1l′;m′−µµ)

for σ = σ ′
√

2l′ + 1

l′ + 1

∑
µ

C(l1l;m−µµ)glm−µ;l′−1m−µ′C(l′ − 11l′;m′−µµ)

for σ = m and σ ′ = e

−
√

2l′ + 1

l′ + 1

∑
µ

C(l1l;m−µµ)glm−µ;l′−1m−µ′C(l′ − 11l′;m′−µµ)

for σ = e and σ ′ = m.

(2)

C is the Clebsch–Gordon coefficient for the angular momenta 1 and l, which combines the
vector nature of the electromagnetic wave and the space dependence of the electromagnetic
wave. g is the scalar structure factor:

glml′m′ = 4π
∑
l′′m′′

il−l′−l′′Clm;l′m′;l′′m′′hl′′(κR)Y
∗
l′′m′′(−R̂)

where i = √−1 and κ = ω/c. Clml′m′l′′m′′ are the so-called Gaunt coefficients which determine
the coefficient of overlap among the three spherical harmonics (l, m), (l′, m′), and (l′′, m′′).
hl and Ylm are the usual first-kind Hankel functions and spherical harmonics, respectively.
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Since the frequency enters into the structure factor, the matrix equation of the vector-wave
KKR method is a set of highly nonlinear equations with respect to the frequency. However,
the physical solution of the above equation set can be picked out by counting the number
of positive pseudo-eigenvalues for each frequency. Thus the original problem of obtaining
the eigenfrequencies is reduced to that of searching for the change in the number of positive
pseudo-eigenvalues as a function of the frequency, and the degeneracy of the eigenfrequency
is determined by the counter-change in the number of neighbouring pseudo-eigenvalues. The
accuracy of the solution is set by the resolution of the frequency mesh points and the value of
l; we generally require the eigenfrequency to be accurate to the third digit. Our program code
has been tested extensively with other available results; even for structures composed of ideal
metal spheres, our band structures are in excellent agreement with that calculated using the
finite-difference time-domain method [29] with the finest mesh size possible.

3. Numerical results and discussion

The photonic band gap depends both on the crystal symmetry and on the symmetry and
composition of the embedded elements; we will concentrate in this paper on the body-
centred-tetragonal (BCT) structures composed of spheres in a constant background of dielectric
material. The background dielectric constant is set to 1 for simplicity, as the spectra for other
background dielectric constants can be deduced easily using the scaling relation. The spheres
considered can be of either ionic or metallic nature; there can be a single layer or a double
layer of the two component elements. Using a double layer of spheres also has relevance
to the experimental situation for photonic crystals, because metal spheres are usually coated
with dielectric layers in order to avoid current formation. The reason for considering BCT
photonic crystals is that such structures can be easily realized in an electrorheological fluid of
metallic coated spheres [15]; thus it is possible to manufacture photonic crystals with optical
wavelengths. The particular BCT lattice type that we have in mind has the lattice constant
c̃ = c/a = √

2/3; this structure has a chain-like arrangement when the spheres touch each
other on the z-axis. There, the maximum filling ratio also takes a higher value (of f = 0.698)
than that for body-centred-cubic (BCC) crystals.

We have used our recently developed vector-wave KKR program code to compute the
various structures with different elements mentioned above. Our results demonstrate that
while these structures do not favour the formation of absolute band gaps for crystals composed
of purely dielectric spheres, an absolute photonic band gap does occur if ionic or metal spheres
are used. The photonic band structures of BCT crystals are calculated along the high-symmetry
points; their coordinates in the first Brillouin zone are: X(1/2, 1/2, 0); M(1, 0, 0); '(0, 0, 0);
H(0, 0, (1 + c̃2)/2c̃); and H(1, 0, (1 − c̃2)/2c̃) in units of 2π/a, where a is the lattice constant
on the x–y plane. Note that if c̃ = 1, the BCT structure is reduced to a BCC structure;
then points H and H′ become equivalent to each other. The sphere filling ratio is given
by f = (8π/3c̃)(rS/a)3; the photonic band structures are all calculated with the angular
momentum l = 7. Our numerical study reveals an indirect gap between the ' point in the
conduction band and the M point in the valence band in all these structures. While the absolute
band gap depends on the proper choice of the material parameters for the ionic spheres, it is
quite general for the structures composed of metal spheres.

We first consider photonic crystals composed of ionic materials. In the bulk ionic materials
there is strong coupling between the transverse optical phonon modes and the external electro-
magnetic wave; the resulting mixed modes are called polaritons, which appear either in
the frequency range below the transverse optical phonon frequency ωT or in that above the
longitudinal optical phonon frequency ωL. Thus, the electromagnetic wave cannot propagate



The photonic band structures of BCT crystals 5311

into the forbidden gap between the transverse and longitudinal optical phonon frequencies in
bulk ionic crystals. The situation changes in the case of photonic crystals composed of ionic
spheres due to the presence of resonance modes of the spheres [30] and due to the connected
network of voids in the background media—so the electromagnetic wave can in principle
propagate. According to Fuchs and Kliewer [30], the resonance modes of the ionic spheres
can be found by applying the divergence condition to the scattering T -matrix, and they can
be classified as: the low-frequency modes below ωT , the surface modes between ωT and
ωL, and the high-frequency modes above ωL. The low- and high-frequency modes are bulk
modes because the dielectric constants in these frequency ranges are positive; between the
transverse and longitudinal optical phonon frequencies, the dielectric constants are negative,
so electromagnetic waves cannot penetrate into the interior of the ionic spheres, and thus
form surface modes. However, only the low-frequency and surface modes have rather sharp
resonance peaks, while the high-frequency modes have only broader peaks; the sharp resonance
modes drastically modify the behaviour of photon propagation in such media, as we shall see
below. We have computed the photonic structures of two different materials; one is GaAs
and another is MgO. GaAs has only a very small polariton gap while MgO has a quite large
polariton gap; an absolute band gap is found to exist only in MgO and its size is directly
correlated with the size of the polariton gap. Thus we will take MgO as our example in
the following discussion; its material parameters are: dielectric constant ε(∞) = 2.95;
longitudinal frequencyωL = 14×1013 s−1; and transverse frequencyωT = 7.5×1013 s−1. The
general dielectric function for ionic spheres is assumed to be a real number and takes the form

ε(ω) = ε(∞)(ω2
L − ω2)/(ω2

T − ω2).

We take the lattice constant a = 7.54 µm [17], so the dimensionless parameters used in the
numerical computation are ωLa/2πc = 0.56 and ωT a/2πc = 0.30.

The photonic band structure for the filling ratio f = 0.69 is displayed in figure 1(a), The
densely distributed bands below the transverse optical phonon frequency ωT a/2πc = 0.3 are
contributed by the low-frequency resonance modes of ionic spheres, while those below the
longitudinal optical phonon frequency ωLa/2πc = 0.56 are caused by the surface resonance
modes [30]. One notable feature is the existence of two rather dispersive bands between these
two batches of flat bands; these bands are identified as the bands of propagation among the
voids, since they persist when the filling ratio becomes very small. The absolute band gap is an
indirect gap between the M point of the upper densely distributed bands and the ' point of the
propagation band; the mid-gap frequency and gap/mid-gap frequency areωa/2πc = 0.373 and
0.093, respectively. As the size of the ionic sphere radius decreases, the number of flat bands
in the lower and upper frequency ranges decreases, and the dispersion of the propagation band
becomes large, which makes the band gap smaller. In fact, the absolute band gap disappears
below the filling ratio f = 0.6 due to the high dispersion of the propagation band. The photonic
band structures for ionic spheres with 5% high-dielectric-constant coating (with ε = 12) are
shown in figure 1(b); the filling ratios aref = 0.698 andf = 0.598 for the coated and uncoated
ionic spheres, respectively. The absolute band gap and number of flat bands are both reduced
because of the reduction of the ionic sphere radius; the high-dielectric-constant coating layer
also pulls down the frequency of the whole spectrum, since it acts as an attractive potential
for the electromagnetic wave. The mid-gap frequency and gap/mid-gap frequency are 0.356
and 0.067, respectively. Note that the combination of the ionic and high-dielectric-constant
materials favours the formation of a band gap, since a pure ionic sphere with the filling ratio
f = 0.6 has no absolute band gap.

For the photonic crystals composed of metal spheres, the dielectric function of the plasmon
model is adopted, ε(ω) = 1 − ω2

p/ω
2 with ωp denoting the plasmon frequency. Just like in
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Figure 1. The photonic band structures of BCT crystals composed of ionic spheres in air: (a) purely
ionic spheres with the material parameters ε(∞) = 2.95,ωLa/2πc = 0.56,ωT a/2πc = 0.30, and
f = 0.69; (b) coated ionic spheres with coating of thickness 5% of the total radius and dielectric
constant ε = 12, and f = 0.698.

the case of ionic spheres, the resonance modes of metal spheres are also determined from
the zeros of the denominator of the scattering T -matrix. In contrast to the ionic situation,
the dielectric constant is always negative below the plasmon frequency and positive above;
therefore the only resonance modes of the metal spheres below the plasmon frequency are the
surface resonance modes. These surface resonance modes are called Mie resonance modes;
they are determined by the condition ε = −(l + 1)/ l when the radius of the metal spheres
approaches zero [30]. The corresponding frequency is then given by ωl = ωp

√
l/(2l + 1).

The frequency of the Mie surface resonance for finite radius, however, is reduced [30]. In
figure 2(a), the photonic band structures for the reduced plasmon frequency ωpa/2πc = 0.5
and filling ratio f = 0.69 are shown. When the frequency is higher than the reduced plasmon
frequency 0.5, the overall photonic structures very much resemble the structures in the vacuum;
the most significant change from the vacuum spectrum takes place at the surface Mie-resonance
frequency ωl , where the width of the Mie-resonance-induced bands increases with the size of
the metal spheres because of the overlapping among the neighbouring modes. Well below the
surface Mie-resonance frequency ωl , an absolute band gap opens up between the ' point of
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Figure 2. The photonic band structures of BCT crystals composed of metal spheres in air: (a) purely
metal spheres with the material parametersωpa/2πc = 0.5 and f = 0.69; (b) coated metal spheres
with coating of thickness 5% of the total radius and dielectric constant ε = 12, and f = 0.698.

the fourth band and the M point of the fifth band; the mid-gap frequency and gap/mid-gap
frequency are 0.176 and 0.292. Our calculation suggests that the size of the gap monotonically
decreases as the filling ratio decreases, and vanishes when the filling ratio f � 0.5. The higher
filling ratio of metal spheres restricts the space in which electromagnetic wave can propagate;
an absolute band gap results from strong squeezing of the field. For the metal spheres with a
high-dielectric-constant (ε = 12) coating, the photonic band structure is shown in figure 2(b);
the coating thickness is 5% of the whole sphere’s radius and the filling ratio of the whole
sphere is f = 0.698. It is seen that the Mie-resonance-related bandwidth shrinks and the
photonic band gap decreases as the filling ratio of the metal spheres is reduced to f = 0.598;
the mid-gap frequency and gap/mid-gap frequency become 0.151 and 0.219, respectively. If
the metal spheres are not coated with high-dielectric-constant material, the photonic band gap
is even smaller.

The above band structures actually correspond to a very small lattice constant or very
poor metals; otherwise the reduced plasmon frequency is usually much larger, in view of the
current engineering techniques for making the photonic crystals. To improve the relevance to
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the experimental situation, we also consider a sample composed of aluminium spheres. The
plasmon frequency is ωp = 15.3 eV, and if we take the lattice constant a = 1.2 µm, the
reduced plasmon frequency is ωpa/2πc = 14.8. The calculated photonic band structures are
shown in figure 3(a); the characteristic feature of the band structures is the large band gaps in
all directions, but the absolute band gap is actually much smaller. The absolute band gap is
also an indirect gap between the' point in the fourth band and the M point in the fifth band; the
mid-gap frequency and gap/mid-gap frequency are 0.806 and 0.218, respectively. Because the
reduced plasmon frequency is so high, the corresponding Mie resonances lie high above the
band gap. Comparing figure 2(a) and figure 3(a), we find that the dispersions of the conduction
and valence bands are both sensitive functions of the reduced plasmon frequency; the higher the
reduced plasmon frequency, the larger the dispersion. The photonic band structure for metal
spheres coated with high-dielectric-constant (ε = 12) material is shown in figure 3(b). The
coating layer thickness and the filling ratio for the whole sphere are the same as for figure 2(b);
the mid-gap frequency and gap/mid-gap frequency are 0.674 and 0.162. Again the absolute
band gap is shrunken due to the smaller filling ratio for metal spheres.
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Figure 3. The photonic band structures of BCT crystals composed of metal spheres in air: (a) purely
metal spheres with the material parameters ωpa/2πc = 14.8 and f = 0.69; (b) coated metal
spheres with coating of thickness 5% of the total radius and dielectric constant ε = 12, and
f = 0.698.
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For the range of frequencies much lower than the plasmon frequency ωp, the dielectric
constant is a large negative number, and can thus be modelled by a large negative constant.
Comparative study of photonic band structures using the plasmon model and a negative large
constant shows that the overall structures are the same except some fine details. These are
illustrated in figure 4; all parameters are the same as those of figure 3 except that the dielectric
function of the metal spheres is replaced by a large negative constant, ε = −200. In the
photonic crystal with single-layer metal spheres, the mid-gap frequency and gap/mid-gap
frequency are 0.777 and 0.244; in the case of metal spheres coated with high-dielectric-constant
material, the mid-gap frequency and gap/mid-gap frequency are 0.639 and 0.172, respectively.

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

(b)

Γ MH'HMX

ω
a/

2 π
c

Wave Vector

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

(a)
Γ MH'HMX

ω
a/

2 π
c

Figure 4. The photonic band structures of BCT crystals of metal spheres in air: (a) purely metal
spheres with the material parameters ε = −200 and f = 0.69; (b) coated metal spheres with
coating of thickness 5% of the total radius and dielectric constant ε = 12, and f = 0.698.

Finally, we would like to mention that the convergence and accuracy of our program code
have been fully checked against other numerical methods. In the case of diamond crystal
composed of ideal metal spheres with filling ratio f = 0.3103 embedded in a dielectric
medium with ε = 2.1, our photonic band structure for l = 7 is in perfect agreement with
that calculated by the finite-difference time-domain method [29]; our gap/mid-gap frequency
(0.5558) lies between the best available value (0.5333) and the asymptotic value (0.5619).
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4. Conclusions

In summary, we have studied in this paper the photonic band structures of BCT crystals
composed of spheres; the spheres can be either ionic or metallic materials. In all the structures
studied, we found an absolute band gap. The gap is particularly large for the structures
composed of metal spheres. This is important in view of the fact that crystals composed of
purely dielectric spheres have no absolute band gap at all. These results show that our newly
developed program code using the vector-wave KKR method offers a reliable and efficient
way to calculate photonic band structures for dielectric as well as metallic systems.
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